Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Braz. j. biol ; 84: e252364, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1355885

ABSTRACT

Abstract Understanding morphological and physiological changes under different light conditions in native fruit species in juveniles' stage is important, as it indicate the appropriate environment to achieve vigorous saplings. We aimed to verify growth and morphophysiological changes under shade gradient in feijoa (Acca sellowiana (O. Berg) Burret) to achieve good quality saplings adequate to improve cultivation in orchards. The saplings were grown for twenty-one-month under four shading treatments (0%, 30%, 50%, and 80%). Growth, photosynthetic pigments, gas exchanges, chlorophyll fluorescence, and leaf anatomy parameters were evaluated. Saplings under full sun and 30% shade had higher height and diameter growth and dry mass accumulation due to higher photosynthesis rate. As main acclimatization mechanisms in feijoa saplings under 80% shade were developed larger leaf area, reduced leaf blade thickness, and enhanced quantum yield of photosystem II. Even so, the net CO2 assimilation and the electron transport rate was lower and, consequently, there was a restriction on the growth and dry mass in saplings under deep shade. Therefore, to obtain higher quality feijoa saplings, we recommend that it be carried out in full sun or up to 30% shade, to maximize the sapling vigor in nurseries and, later, this light environment can also be used in orchards for favor growth and fruit production.


Resumo A verificação de mudanças morfológicas e fisiológicas sob diferentes condições luminosas em espécies frutíferas nativas em estágio juvenil é importante, uma vez que indicam o ambiente adequado para a formação de mudas com alto vigor. Objetivou-se verificar o crescimento e as alterações morfofisiológicas sob gradiente de sombreamento em mudas de feijoa (Acca sellowiana (O. Berg) Burret) para obter mudas de boa qualidade, adequadas para fomentar os plantios da espécie em pomares. As mudas foram cultivadas por vinte e um meses sob quatro tratamentos de sombreamento (0%, 30%, 50% e 80%). Foram avaliados parâmetros de crescimento, pigmentos fotossintéticos, trocas gasosas, fluorescência da clorofila e anatomia foliar. Mudas a pleno sol e 30% de sombra apresentaram maior crescimento em altura, diâmetro e acúmulo de massa seca, devido à maior taxa de fotossíntese. Como principais mecanismos de aclimatação sob 80% de sombra, as mudas desenvolveram maior área foliar, redução da espessura do limbo foliar e aumento do rendimento quântico do fotossistema II. Mesmo assim, a assimilação líquida de CO2 e a taxa de transporte de elétrons foram menores e, consequentemente, houve restrição ao crescimento e acúmulo de massa seca das mudas no maior nível de sombreamento. Portanto, para a obtenção de mudas de feijoa de maior qualidade, recomendamos que seja realizada a pleno sol ou até 30% de sombra, para maximizar o vigor das mudas em viveiros e, posteriormente, este ambiente de luz também pode ser utilizado em pomares para favorecer o crescimento e a produção de frutos.


Subject(s)
Myrtaceae , Feijoa , Photosynthesis , Plant Leaves , Acclimatization , Light
2.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469314

ABSTRACT

Abstract Understanding morphological and physiological changes under different light conditions in native fruit species in juveniles stage is important, as it indicate the appropriate environment to achieve vigorous saplings. We aimed to verify growth and morphophysiological changes under shade gradient in feijoa (Acca sellowiana (O. Berg) Burret) to achieve good quality saplings adequate to improve cultivation in orchards. The saplings were grown for twenty-one-month under four shading treatments (0%, 30%, 50%, and 80%). Growth, photosynthetic pigments, gas exchanges, chlorophyll fluorescence, and leaf anatomy parameters were evaluated. Saplings under full sun and 30% shade had higher height and diameter growth and dry mass accumulation due to higher photosynthesis rate. As main acclimatization mechanisms in feijoa saplings under 80% shade were developed larger leaf area, reduced leaf blade thickness, and enhanced quantum yield of photosystem II. Even so, the net CO2 assimilation and the electron transport rate was lower and, consequently, there was a restriction on the growth and dry mass in saplings under deep shade. Therefore, to obtain higher quality feijoa saplings, we recommend that it be carried out in full sun or up to 30% shade, to maximize the sapling vigor in nurseries and, later, this light environment can also be used in orchards for favor growth and fruit production.


Resumo A verificação de mudanças morfológicas e fisiológicas sob diferentes condições luminosas em espécies frutíferas nativas em estágio juvenil é importante, uma vez que indicam o ambiente adequado para a formação de mudas com alto vigor. Objetivou-se verificar o crescimento e as alterações morfofisiológicas sob gradiente de sombreamento em mudas de feijoa (Acca sellowiana (O. Berg) Burret) para obter mudas de boa qualidade, adequadas para fomentar os plantios da espécie em pomares. As mudas foram cultivadas por vinte e um meses sob quatro tratamentos de sombreamento (0%, 30%, 50% e 80%). Foram avaliados parâmetros de crescimento, pigmentos fotossintéticos, trocas gasosas, fluorescência da clorofila e anatomia foliar. Mudas a pleno sol e 30% de sombra apresentaram maior crescimento em altura, diâmetro e acúmulo de massa seca, devido à maior taxa de fotossíntese. Como principais mecanismos de aclimatação sob 80% de sombra, as mudas desenvolveram maior área foliar, redução da espessura do limbo foliar e aumento do rendimento quântico do fotossistema II. Mesmo assim, a assimilação líquida de CO2 e a taxa de transporte de elétrons foram menores e, consequentemente, houve restrição ao crescimento e acúmulo de massa seca das mudas no maior nível de sombreamento. Portanto, para a obtenção de mudas de feijoa de maior qualidade, recomendamos que seja realizada a pleno sol ou até 30% de sombra, para maximizar o vigor das mudas em viveiros e, posteriormente, este ambiente de luz também pode ser utilizado em pomares para favorecer o crescimento e a produção de frutos.

3.
Rev. biol. trop ; 71(1)dic. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1449503

ABSTRACT

Introduction: Defined seasonality in savanna species can stimulate physiological responses that maximize photosynthetic metabolism and productivity. However, those physiological responses are also linked to the phenological status of the whole plant, including leaf phenophases. Objective: To study how physiological traits influence phenophase timing among congeneric and co-occurring savanna species. Methods: We evaluated the leaf phenology and physiological traits of populations of Byrsonima intermedia, B. coccolobifolia, and B. verbascifolia. Physiological measurements were performed at the onset of the dry and rainy seasons and again late in the season. Results: B. intermedia and B. coccolobifolia were classified as brevideciduous and B. verbascifolia as evergreen. The maximum quantum yield for B. intermedia and B. coccolobifolia were lowest during the dry season. At the onset of the dry period, the highest chloroplastidic pigment levels were observed, which decreased as the season advanced, total chlorophyll/carotenoid ratios were lowest, and carotenoid contents were highest. We detected low starch content values at the start of the rainy season, coinciding with the resumption of plant growth. Two months into this season, the leaves were at their peak structural and functional maturity, with high water-soluble polysaccharide values and photosynthetic rates, and were storing large amounts of starch. Conclusions: Physiological and leaf phenological strategies of the Byrsonima species were related to drought resistance and acclimatization to the seasonality of savanna water resources. The oscillations of the parameters quantified during the year indicated a strong relationship with water seasonality and with the phenological status of the leaves.


Introducción: La marcada estacionalidad en las especies de sabana puede estimular respuestas fisiológicas que maximicen el metabolismo fotosintético y la productividad. Sin embargo, esas respuestas fisiológicas están vinculadas al estado fenológico de toda la planta, incluidas las fenofases de las hojas. Objetivo: Estudiar cómo los rasgos fisiológicos influyen en el tiempo de la fenofase entre especies de sabana congenéricas y concurrentes. Métodos: Evaluamos la fenología y características fisiológicas de poblaciones de Byrsonima intermedia, B. coccolobifolia y B. verbascifolia. Las mediciones fisiológicas se realizaron al inicio de la estación seca y lluviosa, y de nuevo al final de la estación. Resultados: B. intermedia y B. coccolobifolia se clasificaron como brevicaducifolias y B. verbascifolia como perennifolias. El rendimiento cuántico máximo para B. intermedia y B. coccolobifolia fueron más bajos durante la época seca. Al inicio del período seco, se observaron niveles de pigmentos cloroplastídicos más altos, aunque los niveles de clorofila disminuyeron a medida que avanzaba la estación seca, las proporciones clorofila/carotenoides totales fueron más bajas y los contenidos de carotenoides más altos. Detectamos valores bajos de contenido de almidón al inicio de la época lluviosa, que coincide con la reanudación del crecimiento de la planta. A dos meses de esta época, las hojas estaban en su máxima madurez estructural y funcional, con altos valores de polisacáridos solubles en agua y tasas fotosintéticas, y almacenaban grandes cantidades de almidón. Conclusiones: Las estrategias fisiológicas y fenológicas de las hojas de las especies de Byrsonima estaban relacionadas con la resistencia a la sequía y la aclimatación a la estacionalidad de los recursos hídricos de la sabana. Las oscilaciones de los parámetros cuantificados durante el año indicaron una fuerte relación con la estacionalidad hídrica y con los estados fenológicos de las hojas.

4.
China Journal of Chinese Materia Medica ; (24): 2725-2731, 2023.
Article in Chinese | WPRIM | ID: wpr-981375

ABSTRACT

To solve the serious problem of stem and leaf shading in the middle and late stage of traditional flat planting of Codonopsis pilosula, this study analyzed the effects of different stereoscopic traction heights on the photosynthetic characteristics and growth of C. pilosula and explored the optimal traction height to improve the yield and quality of C. pilosula. The experiment designed three stereo-scopic traction heights [H1(60 cm), H2(90 cm), and H3(120 cm)] with natural growth without traction as the control(CK). The results showed that the increase in stereoscopic traction heights broadened the growth space of stems and leaves of C. pilosula, enhanced the ventilation effect, significantly increased the average daily net photosynthetic rate of C. pilosula, promoted the absorption of intercellular CO_2, decreased the transpiration rate, and reduced the evaporation of water. Moreover, it effectively avoided the problem of weakened photosynthesis, maintained the carbon balance of individual plants, and promoted the growth and development of the C. pilosula roots. In terms of the seed yield of C. pilosula, it was ranked as H2>H1>H3>CK. To be specific, H1 increased by 213.41% compared with CK, H2 increased by 282.43% compared with CK, and H3 increased by 133.95% compared with CK. The yield and quality of C. pilosula were the highest in the H3 treatment group, with the fresh yield of 6 858.33 kg·hm~(-2), 50.59% higher than CK, dry yield of 2 398.33 kg·hm~(-2), 76.54% higher than CK, and lobetyolin content of 0.56 mg·g~(-1), 45.22% higher than CK. Therefore, the stereoscopic traction height has a great influence on the photosynthetic characteristics, yield, and quality of C. pilosula. Particularly, the yield and quality of C. pilosula can be optimized and improved in the traction height treatment of H3(120 cm). This planting method is worth popularizing and applying in the cultivated management of C. pilosula.


Subject(s)
Codonopsis , Traction , Photosynthesis , Plant Leaves , Plant Roots
5.
Biosci. j. (Online) ; 38: e38090, Jan.-Dec. 2022. tab
Article in English | LILACS | ID: biblio-1397534

ABSTRACT

The search for genetic materials resistant to adverse weather conditions has been a major focus in studies on species of economic interest. The objective of the present study was to assess the growth and photosynthesis of rubber seedlings clones under two conditions of atmospheric evaporative demand, characterized by fluctuations in temperature (TEMP) and vapor pressure deficit (VPD), associated to two water regimens. Hevea brasiliensis Muell. Arg (RRIM 600 and FX 3864) clones were assessed in two microclimates, at low (TEMP 21.2 ºC and VPD 0.29 Kpa) and high (TEMP 26.9 ºC and VPD 1.49 Kpa) atmospheric evaporative demand, under two water regimens: water deficit and well-watered. Water deficit 50% water availability was sufficient to reduce the net CO2 assimilation rate, leaf area and total chlorophyll of the clones studied that impacted growth in both microclimates. The effects of water deficit on growth and net carbon assimilation rate were intensified under high atmospheric evaporative demand. However, when comparing the two clones studied, RRIM 600 showed greater growth and photosynthesis without water restriction. The FX 3864 clone, despite the high CO2 assimilation values under high atmospheric demand and without water restriction, showed a reduced growth. The results of this study form an important basis for the selection of genotypes with the potential to develop in adverse climatic conditions. In this sense, the RRIM 600 genotype is recommended as a promising material that would best adapt under adverse climatic conditions.


Subject(s)
Photosynthesis , Rubber , Hevea/growth & development , Efficient Water Use
6.
Biosci. j. (Online) ; 38: e38066, Jan.-Dec. 2022. ilus, graf, tab
Article in English | LILACS | ID: biblio-1396895

ABSTRACT

A wide range of soybean cultivars is available on the market and understanding the physiological response and yield of these materials is fundamental to develop new management systems. Thus, the objective of the present study was to assess ecophysiological parameters and yield of soybean cultivars under field conditions. The experiment was carried out on a farm located in the municipality of Açailândia, Maranhão, Brazil. Three commercial cultivars were used (SC1, SC2 and SC3), and gas exchanges, SPAD index, Fv/Fm, photosynthesis index (PI), instantaneous water use efficiency (WUE) and intrinsic instantaneous of the use of water (iWUE) were assessed during the vegetative (V5) and reproductive (R5) stages. In addition, the biomass and production components were obtained. A randomized complete block design was used, with three cultivars and six replications. SC2 obtained the best mean for the photochemical variables. SC2 was more efficient at both development stages in WUE, but the maximum iWUE values were obtained in SC3. The SC2 cultivar obtained the best responses in the main variables analyzed, resulting in a higher yield.


Subject(s)
Soybeans , Chlorophyll , Efficient Water Use , Fluorescence
7.
Ciênc. rural (Online) ; 52(10): e20210282, 2022. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1375115

ABSTRACT

Photoassimilate partition and allocation among plant organs varies throughout their development and is also influenced by factors inherent to the genotype and the environment. Nodulation in the soybean-diazotrophic bacteria interaction is more effective than in the bean-diazotrophic bacteria interaction. This investigation studied growth and photoassimilate partitioning throughout the bean and soybean cycles and inferred how much it could affect the nodulation of the roots. For this purpose, an experiment with two treatments was carried out, soybean (cultivar BRS GO - 7760 - RR) and bean (cultivar BRS Estilo), with four replications, conducted in pots and entirely randomized. The seeds were inoculated with commercial rhizobia specific for bean and soybean LeguMax® (Novozymes-Turfal). Plants were analyzed throughout their cycles based on leaf area and dry mass of all organs, including nodules. Mathematical models were fitted to the data and based on them, the instantaneous physiological indicators of growth were estimated, and the percentages of photoassimilate partition among organs were evaluated. Crop growth rate, relative growth rates, net assimilation rate as well as net photosynthesis rate had higher values in soybean compared to bean, following the pattern of leaf area and total dry mass. For both species, the highest rates occurred at the beginning of the cycle, decreasing with age. Unlike the bean, soybean has a high capacity to supply photosynthates to all of its organs throughout its entire cycle, favoring the maintenance of nodule growth and explaining its greater capacity for nitrogen assimilation.


Durante o desenvolvimento das plantas a partição e alocação de fotoassimilados variam entre os seus órgãos, e dependem de fatores inerentes ao genótipo e ao meio ambiente. A nodulação é mais efetiva na interação soja-bactéria diazotrófica do que na interação feijão-bactéria diazotrófica. Esta pesquisa tem como objetivo estudar o crescimento e a partição de fotoassimilados ao longo dos ciclos do feijão e da soja e inferir o quanto isso pode afetar a nodulação das raízes. Para tanto, foi instalado um experimento com dois tratamentos, soja (cultivar BRS GO - 7760 - RR) e feijão comum (cultivar BRS Estilo), com quatro repetições, conduzido em vasos e inteiramente ao acaso. As sementes foram inoculadas com inoculantes comerciais específicos para feijão e soja LeguMax® (Novozymes-Turfal). Plantas foram coletadas ao longo de seus ciclos e medidas as áreas foliares e as massas secas de todos os órgãos, incluindo nódulos. Modelos matemáticos foram ajustados aos dados e, com base neles, foram estimados os indicadores fisiológicos instantâneos do crescimento e, também, foram avaliadas as porcentagens de partição de fotoassimilados entre os órgãos. A taxa de crescimento das culturas (CGR), as taxas de crescimento relativo (RGR), a taxa líquida de assimilação (NAR) e a taxa líquida de fotossíntese (Pn) apresentaram maiores valores na soja em relação ao feijoeiro. Para ambas as culturas as maiores taxas ocorreram no início do ciclo, decrescendo ao longo do ciclo cultural. Diferentemente do feijoeiro a soja tem alta capacidade de suprir de fotoassimilados a todos os seus órgãos ao longo de todo o seu ciclo, o que favorece o maior crescimento dos seus nódulos, justificando a sua maior capacidade na captura do N2 atmosférico.


Subject(s)
Photosynthesis , Soybeans/growth & development , Biomass , Phaseolus/growth & development , Root Nodules, Plant
8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 108-115, 2022.
Article in Chinese | WPRIM | ID: wpr-942335

ABSTRACT

Objective : To study the effect of temperature and light intensity on photosynthetic fluorescence parameters, volatile oil content, and growth of Atractylodes lancea and provide reference for the rational selection of cultivation environment for A. lancea. MethodWe determined the photosynthetic indexes (such as net photosynthetic rate, water use efficiency, and carboxylation rate), light response curve, CO2 response curve, fluorescence parameters, and the content of four volatile oils in A. lancea under two temperature treatments (32 °C and 22 °C) and two light treatments (full light and shade). ResultThe net photosynthetic rate and water use efficiency of A. lancea under high temperature + strong light were significantly higher than those under high temperature + weak light and low temperature + strong light. The ability of A. lancea to use weak light at low temperature was the strongest, while the utilization rate of weak light under strong light significantly reduced. The photosynthetic rate of A. lancea at low temperature was more susceptible to light intensity and CO2 concentration than that at high temperature. The maximum photosynthetic rate and apparent quantum efficiency under weak light were significantly higher than those under strong light. The photoreaction efficiency at high temperature was higher than that at low temperature. The total amount of volatile oil in A. lancea treated with high temperature + weak light was the highest, reaching 4.582%. Compared with high temperature + strong light, high temperature + weak light significantly increased the content of hinesol and β-eudesmol in A. lancea by 91.7% and 35.7%, respectively, and low temperature + strong light significantly increased the content of hinesol by 87.5%. The content of β-eudesmol in low temperature + weak light treatment was significantly lower than that in high temperature + weak light treatment. ConclusionTThe growth of A. lancea was affected by the interaction between temperature and light. The light and temperature conditions required for the accumulation of volatile oil were not consistent with those suitable for the growth and development of A. lancea. A. lancea responded to the changes of light and temperature conditions by regulating the synthesis and accumulation of volatile oil.

9.
Braz. arch. biol. technol ; 65: e22210338, 2022. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1364474

ABSTRACT

Abstract: Climatic variation throughout the day influences the ecophysiological performance of plants at different growth stages and phases. Therefore, this work aimed to evaluate the effect of climatic variation on ecophysiological aspects of T. roseoalba and H. heptaphyllus at different hours of the day and indicate the ideal time for measuring ecophysiological variables in these species. The research was carried out in a greenhouse at the forest nursery of the Federal University of Paraíba, Campus II, in the municipality of Areia, Paraíba state, Northeastern Brazil. The experimental design was completely randomized, consisting of 10 evaluation times throughout the day (from 8 am to 5 pm), with 1 h hour interval between each evaluation. Temperature and air relative humidity inside and outside the greenhouse were evaluated to understand the effect on gas exchange (net assimilation rate of CO2, stomatal conductance, transpiration rate, internal concentration of CO2, and vapor-pressure deficit) and chlorophyll a fluorescence (initial, maximum, and variable fluorescence, photochemical quenching, and electron transport rate). Data were submitted to canonical correlation analysis and principal component analysis to verify the relationship between climatic and ecophysiological variables. For both species, higher correlation was found between internal and external relative humidity with all the ecophysiological variables analyzed, except for initial fluorescence. Thus, climatic factors influenced the photosynthetic performance of T. roseoalba and H. heptaphyllus plants, and 8 am to 9 am is indicated for carrying out ecophysiological evaluations in both species.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 165-171, 2022.
Article in Chinese | WPRIM | ID: wpr-940774

ABSTRACT

ObjectiveTo study the effect of organophosphate-solubilizing bacteria and compound bacteria on the photosynthesis and physiological and biochemical characteristics of leaves of Paris polyphylla var. yunnanensis, and to provide a reference for selecting suitable bacterial fertilizers in artificial cultivation of this medicinal species. MethodPot experiment was carried out indoor and the following groups were designed: control (CK), inoculation with Bacillus mycoides (S1), inoculation with B. wiedmannii (S2), inoculation with B. proteolyticus (S3), inoculation with B. mycoides and B. wiedmannii (S4), inoculation with B. mycoides and B. proteolyticus (S5), inoculation with B. wiedmannii and B. proteolyticus (S6), and inoculation with B. mycoides, B. wiedmannii and B. proteolyticus (S7). Then, the growth and development, photosynthesis, and various physiological and biochemical indexes of the leaves of this species were observed. ResultCompared with CK, the treatment groups showed decrease in content of malondialdehyde in the leaves (P<0.05), particularly S7 (content was only about 1/3 that of the CK). The leaf area, photosynthetic parameters, photosynthetic pigment content, soluble sugar content, soluble protein content, and activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves of the treatment groups were all improved. Among them, the leaf area, soluble sugar content, and soluble protein content were the highest in S7, which were 2.8, 2.1, and 2.2 times that of the CK, respectively. SOD activity peaked in S6 (2.9 times higher than that in the CK) and the highest activity of POD and CAT was detected in S5 (1.5 times and 2.1 times, respectively higher than that in the CK). ConclusionInoculation with different organophosphate-solubilizing bacteria or compound bacteria can promote the growth and development of P. polyphylla var. yunnanensis and improve its resistance to stresses. The combination of B. mycoides and B. proteolyticus and the combination of the three achieved the have the best effect. This study provides a reference for the selection of bacterial fertilizers for artificial cultivation of P. polyphylla var. yunnanensis.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 131-138, 2022.
Article in Chinese | WPRIM | ID: wpr-940396

ABSTRACT

ObjectiveTo study the effects of foliar spraying of two kinds of compound rhizosphere growth-promoting agents on the growth and physiological characteristics of Angelicae Sinensis Radix (ASR), as well as the pharmacodynamic components, in order to lay a foundation for providing functional microbial agents for ecological cultivation of ASR. MethodThe compound growth-promoting agents T1 (Pseudomonas CBS5, CBS7 and CBSB) and T2 (Bacillus 5C1, 5C5 and 5C7) with the concentration of 1×108 CFU·mL-1 were sprayed on the leaf surface of the field, and the sterile potato glucose broth medium was used as the control (CK). The plant growth indexes of ASR were measured by conventional methods, the photosynthetic physiological indexes of ASR were measured by portable photosynthetic measurement system, the enzyme activities of plants and microorganisms were measured by kit method, and the endogenous hormone levels were analyzed by ultra-performance liquid chromatography tandem mass spectrometry. The contents of ferulic acid, senkyunolide I, coniferyl ferulate, senkyunolide A and Z-ligustilide were determined by high performance liquid chromatography. ResultCompared with CK, the two compound inoculants could promote the growth of ASR and increase the biomass, increase the leaf net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, increase catalase, peroxidase, superoxide dismutase, polyamine oxidase, diamine oxidase and polyphenol oxidase enzyme activities, increase endogenous jasmonic acid, cytokinin and gibberellin levels in plants, increase the contents of ferulic acid, senkyunolide A and Z-ligustilide, reduce the contents of malondialdehyde and abscisic acid, and reduce the incidence of root rot. ConclusionFoliar spraying of two kinds of rhizosphere compound growth-promoting agents can promote the growth, photosynthesis and stress resistance of ASR, and can improve the quality of ASR in different degrees. Comprehensive analysis shows that T1 treatment is better than T2 treatment in the growth-promoting and quality-enhancing of ASR.

12.
Chinese Journal of Biotechnology ; (12): 592-604, 2022.
Article in Chinese | WPRIM | ID: wpr-927730

ABSTRACT

Cyanobacteria are important photosynthetic autotrophic microorganisms and are considered as one of the most promising microbial chassises for photosynthetic cell factories. Glycogen is the most important natural carbon sink of cyanobacteria, playing important roles in regulating its intracellular carbon distributions. In order to optimize the performances of cyanobacterial photosynthetic cell factories and drive more photosynthetic carbon flow toward the synthesis of desired metabolites, many strategies and approaches have been developed to manipulate the glycogen metabolism in cyanobacteria. However, the disturbances on glycogen metabolism usually cause complex effects on the physiology and metabolism of cyanobacterial cells. Moreover, the effects on synthesis efficiencies of different photosynthetic cell factories usually differ. In this manuscript, we summarized the recent progress on engineering cyanobacterial glycogen metabolism, analyzed and compared the physiological and metabolism effects caused by engineering glycogen metabolism in different cyanobacteria species, and prospected the future trends of this strategy on optimizing cyanobacterial photosynthetic cell factories.


Subject(s)
Carbon/metabolism , Carbon Dioxide/metabolism , Cyanobacteria/metabolism , Glycogen/metabolism , Metabolic Engineering , Photosynthesis/physiology
13.
Acta biol. colomb ; 26(1): 12-18, ene.-abr. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1152664

ABSTRACT

ABSTRACT Leaf anatomy characteristics provide important evidences about the transition between C3 and C4 pathways. The C4 photosynthesis pathway allowed to reduce the C3 photorespiratory rate, concentrating CO2 around the Rubisco site and using structures and machinery already presented in C3 plants. In monocots, it is observed a high number of C4 lineages, most of them phylogenetically related to C3 groups. The genus Apochloa (C3), subtribe Arthropogoninae, is related to two C4 genera Coleataenia and Cyphonanthus. The aim of this study was to evaluate four Apochloa species in order to establish anatomical characteristics related to the evolution of C4 pathway in this group. By means of transverse sections fully expanded leaves of A. euprepes, A. lorea, A. molinioides, and A. poliophylla were collected and the characteristics of the mesophyll (M) and bundle sheath (BS) cells were determined. These species showed a rustic Kranz anatomy with enlarged and radial arranged BS cells, which have few organelles organized in a centrifugal position. Although the modifications of BS cells are probably related to the maintenance of plant water status, we also discuss the evolution for the establishment of C4 photosynthesis in the related C4 genera.


RESUMEN Las características de la anatomía de la hoja proporcionan evidencias importantes sobre la transición entre las vías C3 y C4. La fotosíntesis C4 surgió para reducir la tasa de fotorrespiración C3, concentrando el CO2 alrededor del sitio de la Rubisco y utilizando estructuras y maquinaria ya presentes en las plantas C3. En monocotiledóneas, se observa un alto número de linajes C4, la mayoría de ellas filogenéticamente relacionadas con grupos C3. El género C3 Apochloa, que pertenece a la subtribu Arthropogoninae, está relacionado con dos géneros C4 Coleataenia and Cyphonanthus. En este contexto, el objetivo fue evaluar cuatro especies de Apochloa para establecer las características anatómicas relacionadas con la evolución de la via C4 en este grupo. Se colectaron hojas completamente expandidas de A. euprepes, A. lorea, A. molinioides y A. poliophylla y se determinaron las características de las células del mesófilo (M) y del haz de la vaina (HV) a partir de secciones transversales de la hoja. Las especies presentaron una anatomía rústica de Kranz con células HV agrandadas y de distribución radial, con pocas organelas organizadas en posición centrífuga. Aunque las modificaciones de las células HV están probablemente relacionadas con el mantenimiento del estado hídrico de la planta, se puede inferir que facilitan el establecimiento de la fotosíntesis en los géneros C4 relacionados.

14.
Biosci. j. (Online) ; 37: e37051, Jan.-Dec. 2021. tab, graf
Article in English | LILACS | ID: biblio-1358993

ABSTRACT

This study aimed to determine the gas exchange and the chlorophyll content of green pepper plants under doses and times of application of bio-fertilizers based on manure and enriched organic compost. Two experiments were carried out simultaneously with applications of bio-fertilizers prepared from manure and enriched organic compost, one using cattle manure (CBF) and the other sheep manure (SBF). For these, four doses of biological fertilizers (100, 200, 300 and 400 dm³ ha-1), three application times (0, 30 and 60 days after transplantation - DAT) and absolute control, referring to the absence of fertilization, were used. treatments. were arranged in a randomized block design, totaling 13 treatments. The variables evaluated were: the relative chlorophyll a, b and total content; liquid photosynthesis (A); stomatal conductance (gs); internal CO2 concentration (Ci); instant carboxylation efficiency (iCE - A/Ci); transpiration rate (T); intrinsic water use efficiency (iWUE - A/gs); and water use efficiency (WUE - A/E). Gs, A and T, showed significant effect at 60 DAT with the application of SBF and Ci at 30 DAT with CBF. The dose of 400 dm³ ha-1 of SBF provided greater gas results, and the doses of 200 and 300 dm³ ha-1 of CBF promoted a greater Ci, greater stomatal conductance, greater liquid photosynthesis and better water use efficiency, which results in a greater plant fresh weight at the time of flowering induction.


Subject(s)
Photosynthesis , Capsicum , Manure
15.
Braz. arch. biol. technol ; 64: e21190580, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285547

ABSTRACT

HIGHLIGHTS Azospirillum brasilense stimulates root growth in maize under water deficit. Maize inoculated with A. brasilense shows greater photosynthesis under drought conditions. Under water deficit, maize plants inoculated with A. brasilense showed greater water use efficiency (WUE).


Abstract The objective of this study was to evaluate the gas exchange, root morphology and nutrient concentration in maize plants inoculated with A. brasilense under two water conditions. The experiments were carried out in a greenhouse, one under irrigation and the other under water deficit. The treatments consisted of four A. brasilense inoculants (control (without inoculation), Az1 (CMS 7 + 26), Az2 (CMS 11 + 26) and Az3 (CMS 26 +42). At the V6 plant stage, water stress was imposed on maize plants for 15 days. The phytotechnical characteristics, gas exchange, root morphology, root dry matter and macronutrient analysis were evaluated after 15 days of water deficit imposition. The water deficit caused a reduction in the development of maize plants. The presence of A. brasilense Az1 under the same condition yielded higher photosynthesis, carboxylation efficiency, water use efficiency, and greater soil exploration with increased length, surface area and root volume of plants. Inoculation by A. brasilense increased root system volume by an average of 40 and 47% under irrigation and water deficit, respectively, when compared to non-inoculated plants. The inoculant Az1 attenuated the deleterious effects caused by drought and yielded the best growth of the root system, resulting in the tolerance of maize plants to water deficit.


Subject(s)
Photosynthesis , Water Consumption (Environmental Health) , Zea mays , Efficient Water Use/methods
16.
Ciênc. rural (Online) ; 51(10): e20200549, 2021. tab
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1278861

ABSTRACT

ABSTRACT: Macronutrient suppression is one way to identify which chemical elements is the most important in the early development of seedlings of forest species. This study evaluated the initial growth of Eucalyptus benthamii seedlings through morphological and physiological variables, submitted to doses of N, P and K, and liming. The experimental design to install the experiment was completely randomized, with a 2x9 factorial scheme, in which levels of factor "A" referred to absence and presence of liming and levels of factor "B", to the different treatments of NPK. Morphological variables of SD (stem diameter) and H (height) and the physiological variables of A (photosynthesis), E (transpiration), gs (stomatal conductance), Ci/Ca (relationship between intercellular and atmospheric CO2 concentration) and WUE (water use efficiency) were measured. For morphological variables, the absence of N directly affected the means and there was a direct relationship between increase of the dose and increase of SD and H. There was a positive relationship of P mainly in relation to shoot dry matter content (SDMC) and root dry matter content (RDMC). For the physiological variables, there was no direct response with the doses of N or P, with K being the element that most influenced the variables, especially when limestone was applied, resulting in higher averages for photosynthesis, transpiration and stomatal conductance. With the purpose of meeting the morphological and physiological demands, the recommendation for cultivation of Eucalyptus benthamii under the conditions of this study is the doses 150-200-150, without liming application.


RESUMO: A supressão dos macronutrientes é uma das maneiras de identificar qual ou quais dos elementos químicos é o mais importante no desenvolvimento inicial das mudas de espécies florestais. O estudo objetivou avaliar o crescimento inicial de mudas de Eucalyptus benthamii por meio de variáveis morfológicas e fisiológicas, submetidas a doses de N, P e K, e calagem. O delineamento experimental para instalação do experimento foi em delineamento inteiramente casualizado, com esquema fatorial 2x9, em que os níveis do fator "A" se referiram a ausência e a presença de calagem e os níveis do fator "B" aos diferentes tratamentos de NPK. Variáveis morfológicas de DAC (diâmetro a altura do colo) e H (altura) e as variáveis fisiológicas de A (fotossíntese), E (transpiração), gs (condutância estomática), Ci/Ca (relação entre a concentração intercelular e atmosférica de CO2) e WUE (eficiência no uso da água) foram determinadas. Para as variáveis morfológicas, a ausência do N afetou diretamente as médias, havendo uma relação direta entre o aumento da dose com o aumento das variáveis. Há uma relação positiva do P principalmente em relação a MSPA e MSPR. Para as variáveis fisiológicas, não houve resposta direta com as doses de N ou P, sendo o K o elemento que mais influenciou as variáveis, principalmente quando o calcário foi aplicado, resultando em maiores médias para fotossíntese, transpiração e condutância estomática. Com o objetivo de atender às demandas morfológicas e fisiológicas, a recomendação para o cultivo de Eucalyptus benthamii nas condições deste estudo é a dose 150-200-150, sem aplicação de calagem.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 121-129, 2021.
Article in Chinese | WPRIM | ID: wpr-906090

ABSTRACT

Objective:To investigate the physiological response of Ginseng Radix et Rhizoma with different phenotypes to high light stress under farmland cultivation mode, and to provide theoretical support for breeding of and fine management of new varieties of farmland ginseng. Method:Four-year-old ginseng plants with different stem colors were used as materials, and blue film was replaced by the colorless and translucent film for performing high light stress and investigating the change of growth status, light response curve, photosynthetic and fluorescence parameters of ginseng leaves. Meanwhile, the physiological adaptability and cell ultrastructural differences of ginseng with different phenotypes for strong light were compared by analyzing the variation of leaf ultrastructural characteristics before and after the stress. Result:The color of ginseng leaves became weak and the content of chlorophyll was greatly decreased with burning phenomenon on the leaf margin under high light stress. The maximum net photosynthetic rate and light saturation point of purple-stem ginseng were higher than those of green-stem ginseng. Transpiration rate, water use efficiency and other gas exchange parameters of purple-stem ginseng had adversity advantages, photosynthetic electron transport rate, maximum photochemical efficiency, photochemical quenching coefficient and other chlorophyll fluorescence parameters were higher than those of green-stem ginseng. There were changes in ultrastructure of the two germplasms, and the plasmolysis of green-stem ginseng was more obvious, its chloroplast membrane ruptured, the contents were exuded and the accumulation of starch grains and osmiophilic bodies increased. The chloroplast membrane structure of purple-stem germplasm was relatively stable, and its number of multivesicular bodies increased significantly by comparing with that of green-stem ginseng under high light. Conclusion:High light stress inhibits the leaf growth of farmland ginseng with different stem colors. The photosynthetic efficiency of green-stem ginseng is obviously reduced, and the integrity of chloroplast is damaged, leading to the weak physiological resistance. The purple-stem ginseng can reduce the damage of the photosynthetic system of plants under high light stress by its special cell structure and non-photochemical quenching advantages. Therefore, the purple-stem ginseng can be cultivated into a new resistant variety.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 181-187, 2021.
Article in Chinese | WPRIM | ID: wpr-905080

ABSTRACT

Objective:To study the effects of different drought conditions on the growth and photosynthetic physiological parameters of Acanthopanax senticosus,in order to provide the theoretical basis for standardized planting and rational development and utilization of A. senticosus. Method:In this study,three-year-old A. senticosus was used as experimental samples. The growth parameters,photosynthetic parameters,and photosynthetic physiological parameters were determined to study the effects of different drought conditions on the growth and photosynthesis of A. senticosus. Result:The plant height and leaf number were significantly lower than the control group under drought stress conditions,and the leaf area was higher than the control group under drought stress. Net photosynthetic rate,stomata conductance and transpiration rate were not significantly different between the control group and the moderate drought stress group. They were significantly decreased in the severe drought stress group,while the intercellular carbon dioxide concentration increased with the severity of drought stress. With the treatment time,the initial fluorescence was higher in the severe drought stress group than in the control group,and the moderate drought stress group was lower than the control group,the maximum fluorescence was significantly lower in the severe drought stress group than in the control group, potential photochemical efficiency and maximum photochemical efficiency were significantly elevated in the moderate drought stress group. Conclusion:Drought stress can significantly inhibit the growth of A. senticosus. Severe drought conditions can significantly inhibit the photosynthesis of A. senticosus leaves. This effect is related to the regulation of stomatal size,but not related to the activity of photoreaction center.

19.
Chinese Journal of Biotechnology ; (12): 1229-1236, 2021.
Article in Chinese | WPRIM | ID: wpr-878626

ABSTRACT

Lactate is an important industrial chemical and widely used in various industries. In recent years, with the increasing demand for polylactic acid (PLA), the demand for lactate raw materials is also increasing. The contradiction between the high cost and the market demand caused by the heterotrophic production of lactate attracts researchers to seek other favorable solutions. The production of lactate from photosynthetic carbon fixation by cyanobacteria is a potential new raw material supply strategy. Based on the photosynthetic autotrophic cell factory, it can directly produce high optical purity lactate from carbon dioxide on a single platform driven by solar energy. The raw materials are cheap and easy to obtain, the process is simple and controllable, the products are clear and easy to separate, and the double effects of energy saving and emission reduction and production of high value-added products are achieved at the same time, which has important research and application value. This paper reviews the development history of cyanobacteria carbon sequestration to produce lactate, summarizes its research progress and encounters technical difficulties from the aspects of metabolic basis, metabolic engineering strategy, metabolic kinetics analysis and technical application, and prospects the future of this technology.


Subject(s)
Carbon Cycle , Carbon Dioxide , Cyanobacteria/genetics , Lactic Acid , Metabolic Engineering , Photosynthesis
20.
Biosci. j. (Online) ; 36(1): 152-160, jan./feb. 2020. graf, tab
Article in English | LILACS | ID: biblio-1049228

ABSTRACT

The knowledge of gas exchanges in forage plants is essential for a better understanding of the process of forage biomass production in pasture. This study evaluated the gas exchange in massai grass fertilized with increasing levels of nitrogen fertilizer (control - without nitrogen fertilizer; 400; 800 and 1200 kg ha-1year-1) and under rotational grazing by sheep, in a completely randomized design with repeated measures in time. The rest period was approximately 1.5 new leaves per tiller, as determined in the pre-test at the beginning of the experiment, providing interval of 22; 18; 16 and 13 days for the levels 0.0 - control; 400; 800 and 1200 kg ha-1 year-1 nitrogen, respectively. The animals used to lower the sward height to the recommended residual height were sheep (½ Morada Nova x ½ undefined breed), placed in paddocks of 42.3 m2. As the animals grazed, the height of the sward was monitored with a ruler until the canopy reached the recommended residual height of approximately 15 cm, corresponding to the residual LAI of exit of the animals from the paddock at approximately 1.5, as determined in a pre-test to set up the experiment. The variables stomatal conductance, leaf photosynthesis rate, leaf carbon dioxide concentration, photosynthesis/transpiration ratio, chlorophyll relative index and nitrogen sufficiency index revealed a positive linear response to nitrogen fertilization. Nitrogen fertilization level at 1200 kg ha-1year-1 caused an increment of 92.3% in leaf photosynthesis rate in relation to the control. The leaf temperature and photosynthesis/conductance ratio were reduced with increasing nitrogen levels. The leaf transpiration showed a quadratic response with maximum point with increasing nitrogen levels. Nitrogen fertilization favor the gas exchange in massai grass up to the last level tested.


O conhecimento das trocas gasosas em plantas forrageiras é essencial para melhor entendimento de como ocorre o processo de produção de biomassa de forragem na pastagem. Objetivou-se avaliar as trocas gasosas no capim-massai submetido a crescentes doses de nitrogênio (controle - sem nitrogênio; 400; 800 e 1200 kg ha-1 ano-1) e sob lotação rotativa com ovinos, num delineamento inteiramente casualizado com medidas repetidas no tempo. O período de descanso adotado foi de aproximadamente 1,5 novas folhas por perfilho, conforme determinação em pré-ensaio quando do início da instalação do experimento, propiciando um intervalo de 22; 18; 16 e 13 dias para as doses 0,0 ­ controle; 400; 800 e 1200 kg ha-1 ano-1 de nitrogênio, respectivamente. Os animais utilizados para rebaixamento do pasto até a altura residual preconizada foram ovinos (½ Morada Nova x ½ SPRD), alocados em piquetes de 42,3 m2. À medida que os animais pastejavam, a altura do pasto foi monitorada com auxílio de uma régua, até que o dossel atingisse a altura residual preconizada de aproximadamente 15 cm, correspondendo ao IAF residual de saída dos animais do piquete de aproximadamente 1,5, conforme determinação em pré-ensaio para instalação do experimento. As variáveis: condutância estomática, taxa de fotossíntese foliar, concentração interna de CO2, relação fotossíntese/transpiração, índice relativo de clorofila e índice de suficiência de nitrogênio responderam de forma linear crescente ao incremento nas doses de nitrogênio. Verificou-se aumento de 92,3% na taxa de fotossíntese para a dose de N de 1200 kg ha-1 ano-1 em relação à ausência de nitrogênio. A temperatura da folha e a relação fotossíntese/condutância foram reduzidas com o aumento das doses de nitrogênio. A adubação nitrogenada proporcionou resposta quadrática com ponto de máximo sobre a taxa de transpiração foliar. A adubação nitrogenada favorece as trocas gasosas em capim-massai até a última dose estudada.


Subject(s)
Photosynthesis , Sheep , Biomass , Panicum , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL